An affine scaling methodology for best basis selection
نویسندگان
چکیده
A methodology is developed to derive algorithms for optimal basis selection by minimizing diversity measures proposed by Wickerhauser and Donoho. These measures include the p-norm-like (`(p 1)) diversity measures and the Gaussian and Shannon entropies. The algorithm development methodology uses a factored representation for the gradient and involves successive relaxation of the Lagrangian necessary condition. This yields algorithms that are intimately related to the Affine Scaling Transformation (AST) based methods commonly employed by the interior point approach to nonlinear optimization. The algorithms minimizing the `(p 1) diversity measures are equivalent to a recently developed class of algorithms called FOCal Underdetermined System Solver (FOCUSS). The general nature of the methodology provides a systematic approach for deriving this class of algorithms and a natural mechanism for extending them. It also facilitates a better understanding of the convergence behavior and a strengthening of the convergence results. The Gaussian entropy minimization algorithm is shown to be equivalent to a well-behaved p = 0 norm-like optimization algorithm. Computer experiments demonstrate that the p-norm-like and the Gaussian entropy algorithms perform well, converging to sparse solutions. The Shannon entropy algorithm produces solutions that are concentrated but are shown to not converge to a fully sparse solution.
منابع مشابه
Measures and algorithms for best basis selection
A general framework based on majorization, Schur-concavity, and concavity is given that facilitates the analysis of algorithm performance and clarifies the relationships between existing proposed diversity measures useful for best basis selection. Admissible sparsity measures are given by the Schur-concave functions, which are the class of functions consistent with the partial ordering on vecto...
متن کاملAn Affine Scaling Methodology for Best Basis Selection - Signal Processing, IEEE Transactions on
A methodology is developed to derive algorithms for optimal basis selection by minimizing diversity measures proposed by Wickerhauser and Donoho. These measures include the p-norm-like (`(p 1)) diversity measures and the Gaussian and Shannon entropies. The algorithm development methodology uses a factored representation for the gradient and involves successive relaxation of the Lagrangian neces...
متن کاملA General Approach to Sparse Basis Selection: Majorization, Concavity, and Affine Scaling
Measures for sparse best–basis selection are analyzed and shown to fit into a general framework based on majorization, Schur-concavity, and concavity. This framework facilitates the analysis of algorithm performance and clarifies the relationships between existing proposed concentration measures useful for sparse basis selection. It also allows one to define new concentration measures, and seve...
متن کاملAn integrated AHP-VIKOR methodology for plant location selection
Plant location selection invariably has a significant impact on the performance of many companies or manufacturing systems. In this paper, a novel methodology is structured to solve this problem. The two decision making methods, namely AHP and VIKOR, are integrated in order to make the best use of information available, either implicitly or explicitly. In addition, the Delphi method is utilized...
متن کاملAn MCDM-DEA approach for technology selection
Technology selection is an important part of management of technology. Recently Karsak and Ahiska (2005) proposed a novel common weight multiple criteria decision making (MCDM) methodology for selection of the best Advanced Manufacturing Technology (AMT) candidates based on a number of attributes. However, Amin et al. (2006), by means of a numerical example demonstrated the convergence difficul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 47 شماره
صفحات -
تاریخ انتشار 1999